CHIS california health interview survey	
October 2017	CHIS 2015-2016 Methodology Report Series
	Report 3 Data Processing Procedures

CALIFORNIA HEALTH INTERVIEW SURVEY

CHIS 2015-2016 METHODOLOGY SERIES

REPORT 3

DATA PROCESSING PROCEDURES

OCTOBER 2017

This report was prepared for the California Health Interview Survey by Darryl Cooney, Julie Linville, and Dustin Williams of RTI International.

www.chis.ucla.edu

This report describes the data processing and editing procedures for CHIS 2015-2016 performed by RTI International. This report discusses standard data editing procedures and addresses the steps taken for ensuring data quality. It also present discussions on special procedures of editing and coding of geography as well as race and ethnicity survey items.

Suggested citation:

California Health Interview Survey. CHIS 2015-2016 Methodology Series: Report 3 - Data Processing Procedures. Los Angeles, CA: UCLA Center for Health Policy Research, 2017.

Copyright © 2017 by the Regents of the University of California.

The California Health Interview Survey is a collaborative project of the UCLA Center for Health Policy Research, the California Department of Public Health, and the Department of Health Care Services. Funding for CHIS 2015-2016 came from multiple sources: the California Department of Health Care Services, the California Department of Health Care Services (Mental Health Services Division), the California Department of Public Health, The California Endowment, the California Health Benefit Exchange, the California Health Care Foundation, the California Tobacco Control Program and UC San Diego, the California Wellness Foundation, First 5 California, Kaiser Permanente, Keiro Senior HealthCare, San Diego County Health and Human Services Agency, the Williams Institute at UCLA Law School, Marin County Health and Human Services, Imperial County Public Health Department, and the California Immigration Research Initiative.

PREFACE

Data Processing Procedures is the third in a series of methodological reports describing the 2015-2016 California Health Interview Survey (CHIS 2015-2016). The other reports are listed below.

CHIS is a collaborative project of the University of California, Los Angeles (UCLA) Center for Health Policy Research, the California Department of Public Health, and the Department of Health Care Services. RTI International was responsible for data collection and the preparation of five methodological reports from the 2015-2016 survey. The survey examines public health and health care access issues in California. The telephone survey is the largest state health survey ever undertaken in the United States.

Methodological Report Series for CHIS 2015-2016

The methodological reports for CHIS 2015-2016 are as follows:

- Report 1: Sample Design;
- Report 2: Data Collection Methods;
- Report 3: Data Processing Procedures;
- Report 4: Response Rates; and
- Report 5: Weighting and Variance Estimation.

The reports are interrelated and contain many references to each other. For ease of presentation, the references are simply labeled by the report numbers given above. After the Preface, each report includes an "Overview" (Chapter 1) that is nearly identical across reports, followed by detailed technical documentation on the specific topic of the report.

Report 3: Data Processing Procedures (this report) describes the data processing and editing procedures for CHIS 2015-2016. One chapter details the data editing procedures and addresses the steps taken for ensuring data quality. Delivery of the final data sets is also discussed. Another chapter presents information about geographic coding. The next chapter describes how the race and ethnicity survey items were coded for CHIS.

For further methodological details not covered in this report, refer to the other methodological reports in the series at <u>http://healthpolicy.ucla.edu/chis/design/Pages/methodology.aspx</u>. General information on CHIS data can be found on the California Health Interview Survey Web site at <u>http://www.chis.ucla.edu</u> or by contacting CHIS at <u>CHIS@ucla.edu</u>.

TABLE OF CONTENTS

<u>Chapter</u>

PR	EFACE		i
1.	CHIS 2015	5-2016 SAMPLE DESIGN AND METHODOLOGY SUMMARY	1-1
	1.1	Overview	1-1
	1.2	Switch to a Continuous Survey	1-2
	1.3	Sample Design Objectives	1-3
	1.4	Data Collection	1-6
	1.5	Responsive and Adaptive Design Elements	1-11
	1.6	Response Rates	1-11
	1.7	Weighting the Sample	1-14
	1.8	Imputation Methods	1-15
2.	DATA ED	DITING PROCEDURES	2-1
	2.1	Resolving Problem Cases	2-2
	2.2	Interviewer Comments	2-3
	2.3	Coding with Text Strings	2-3
	2.4	Verifying Data Updates	2-5
3.	GEOGRA	PHIC CODING	
	3.1	County of Residence	
	3.2	Geocoding Process	
	3.3	School Names	
4.	INDUSTR	Y AND OCCUPATION CODING	4-1
5.	RACE AN	D ETHNICITY CODING	5-1
	5.1	Coding Procedures	5-1
6.	IMPERIA	L COUNTY ADDRESS-BASED SAMPLE (ABS)	6-1

List of Tables

<u>Table</u>

Page

1-1.	California county and county group strata used in the CHIS 2015-2016 sample design	1-5
1-2.	Number of completed CHIS 2015-2016 interviews by type of sample and instrument	1-7
1-3.	CHIS 2015-2016 survey topic areas by instrument	1-8
1-4a.	CHIS 2015 response rates – Conditional	1-12
1-4b.	CHIS 2015 response rates – Unconditional	1-12
1-4c.	CHIS 2016 response rates – Conditional	1-12
1-4d.	CHIS 2016 response rates – Unconditional	1-13
1-5.	2015-2016 CHIS incentives by interview type	1-13
3-1.	Number of Geocodes Assigned by Rule and by Sample Type	3-3
3-2.	Final distribution of adult extended completed cases by self-reported and original sampling stratum, landline/list sample for CHIS 2015-2016	3-4
3-3.	Final distribution of adult extended completed cases by self-reported and original sampling stratum, cell phone sample for CHIS 2015-2016	3-6

1. CHIS 2015-2016 SAMPLE DESIGN AND METHODOLOGY SUMMARY

1.1 Overview

A series of five methodology reports are available with more detail about the methods used in CHIS 2015-2016.

- Report 1 Sample Design;
- Report 2 Data Collection Methods;
- Report 3 Data Processing Procedures;
- Report 4 Response Rates; and
- Report 5 Weighting and Variance Estimation.

For further information on CHIS data and the methods used in the survey, visit the California Health Interview Survey Web site at <u>http://www.chis.ucla.edu</u> or contact CHIS at <u>CHIS@ucla.edu</u>. For methodology reports from previous CHIS cycles, go to <u>http://healthpolicy.ucla.edu/chis/design/Pages/</u> methodology.aspx

The CHIS is a population-based telephone survey of California's residential, non-institutionalized population conducted every other year since 2001 and continually beginning in 2011. CHIS is the nation's largest state-level health survey and one of the largest health surveys in the nation. The UCLA Center for Health Policy Research (UCLA-CHPR) conducts CHIS in collaboration with the California Department of Public Health and the Department of Health Care Services. CHIS collects extensive information for all age groups on health status, health conditions, health-related behaviors, health insurance coverage, access to health care services, and other health and health-related issues.

The sample is designed and optimized to meet two objectives:

- 1) Provide estimates for large- and medium-sized counties in the state, and for groups of the smallest counties (based on population size), and
- 2) Provide statewide estimates for California's overall population, its major racial and ethnic groups, as well as several racial and ethnic subgroups.

The CHIS sample is representative of California's non-institutionalized population living in households. CHIS data and results are used extensively by federal and State agencies, local public health agencies and organizations, advocacy and community organizations, other local agencies, hospitals, community clinics, health plans, foundations, and researchers. These data are used for analyses and publications to assess public health and health care needs, to develop and advocate policies to meet those needs, and to plan and budget health care coverage and services. Many researchers throughout California and the nation use CHIS data files to further their understanding of a wide range of health-related issues (visit UCLA-CHPR's publication page at <u>http://healthpolicy.ucla.edu/publications/Pages/default.aspx</u> for examples of CHIS studies).

1.2 Switch to a Continuous Survey

From the first CHIS cycle in 2001 through 2009, CHIS data were collected during a 7 to 9 month period every other year. Beginning in 2011, CHIS data have been collected continually over a 2-year cycle. This change was driven by several factors including the ability to track and release information about health in California on a more frequent and timely basis and to eliminate potential seasonality in the biennial data.

CHIS 2015 data were collected between May 2015 and mid-February 2016. CHIS 2016 data were collected between January and December 2016. Approximately half of the interviews were conducted during the 2015 calendar year and half during the 2016 calendar year. As in previous CHIS cycles, weights are included with the data files and are based on the State of California's Department of Finance population estimates and projections, adjusted to remove the population living in group quarters (such as nursing homes, prisons, etc.) and thus not eligible to participate in CHIS. When the weights are applied to the data, the results represent California's residential population during that year for the age group corresponding to the data file in use (adult, adolescent, or child). In CHIS 2015-2016, data users will be able to produce single-year estimates using the weights provided (referred to as CHIS 2015 and CHIS 2016, respectively).

See what's new in the 2015-2016 CHIS sampling and data collection here: http://healthpolicy.ucla.edu/chis/design/Documents/whats-new-chis-2015-2016.pdf

In order to provide CHIS data users with more complete and up-to-date information to facilitate analyses of CHIS data, additional information on how to use the CHIS sampling weights, including sample statistical code, is available at <u>http://healthpolicy.ucla.edu/chis/analyze/Pages/sample-code.aspx.</u>

Additional documentation on constructing the CHIS sampling weights is available in the CHIS 2015-2016 Methodology Series: Report 5—Weighting and Variance Estimation posted at http://healthpolicy.ucla.edu/chis/design/Pages/methodology.aspx. Other helpful information for

understanding the CHIS sample design and data collection processing can be found in the four other methodology reports for each CHIS cycle year.

1.3 Sample Design Objectives

The CHIS 2015-2016 sample was designed to meet the two sampling objectives discussed above: (1) provide estimates for adults in most counties and in groups of counties with small populations; and (2) provide estimates for California's overall population, major racial and ethnic groups, and for several smaller racial and ethnic subgroups.

To achieve these objectives, CHIS employed a dual-frame, multi-stage sample design. The random-digit-dial (RDD) sample included telephone numbers assigned to both landline and cellular service. The RDD sample was designed to achieve the required number of completed adult interviews by using approximately 50% landline and 50% cellular phone numbers. For the RDD sample, the 58 counties in the state were grouped into 44 geographic sampling strata, and 14 sub-strata were created within the two most populous counties in the state (Los Angeles and San Diego). The same geographic stratification of the state has been used since CHIS 2005. The Los Angeles County stratum included eight sub-strata for Service Planning Areas, and the San Diego County stratum included six sub-strata for Health Service Districts. Most of the strata (39 of 44) consisted of a single county with no sub-strata (see counties 3-41 in Table 1-1). Three multi-county strata comprised the 17 remaining counties (see counties 42-44 in Table 1-1). A sufficient number of adult interviews were allocated to each stratum and substratum to support the first sample design objective for the two-year period-to provide health estimates for adults at the local level. Asian surname sample list frames added 426 Japanese, 280 Korean, and 359 Vietnamese adult interviews based on self-identified ethnicity for the combined 2015 and 2016 survey years.¹ Additional samples from both the landline and cell phone frames produced 1,042 interviews in 2015 within Marin County and 2,388 interviews in 2016 within San Diego County. Furthermore, an address-based sample from the USPS Delivery Sequence File produced 258 landline or cell phone interviews in 2016 within the northern part of Imperial County.

Within each geographic stratum, residential telephone numbers were selected, and within each household, one adult (age 18 and over) respondent was randomly selected. In those households with adolescents (ages 12-17) and/or children (under age 12), one adolescent and one child of the randomly

¹ For the 2015 and 2016 survey years combined, all sample frames produced totals of 667 Japanese, 497 Korean, and 597 Vietnamese adult interviews.

selected parent/guardian were randomly selected; the adolescent was interviewed directly, and the adult sufficiently knowledgeable about the child's health completed the child interview.

The CHIS RDD sample is of sufficient size to accomplish the second objective (produce estimates for the state's major racial/ethnic groups, as well as many ethnic subgroups). However, given the smaller sample sizes of one-year data files, two or more pooled cycles of CHIS data are generally required to produce statistically stable estimates for small population groups such as racial/ethnic subgroups, children, teens, etc. To increase the precision of estimates for Koreans and Vietnamese, areas with relatively high concentrations of these groups were sampled at higher rates. These geographically targeted oversamples were supplemented by telephone numbers associated with group-specific surnames, drawn from listed telephone directories to increase the sample size further for Koreans and Vietnamese. Surname and given name lists were used similarly to increase the yield of Californians of Japanese descent.

To help compensate for the increasing number of households without landline telephone service, a separate RDD sample was drawn of telephone numbers assigned to cellular service. In CHIS 2015 and 2016, the goal was to complete approximately 50% of all RDD interviews statewide with adults contacted via cell phone. Because the geographic information available for cell phone numbers is limited and not as precise as that for landlines, cell phone numbers were assigned to the same 44 geographic strata (i.e., 41 strata defined by a single county and 3 strata created by multiple counties) using a classification associated with the rate center linked to the account activation. The cell phone stratification closely resembles that of the landline sample and has the same stratum names, though the cell phone strata represent slightly different geographic areas than the landline strata. The adult owner of the sampled cell phone number was automatically selected for CHIS. Cell numbers used exclusively by children under 18 were considered ineligible. A total of 1,594 teen interviews and 4,293 child interviews were completed in CHIS 2015-2016 with approximately 58% coming from the cell phone sample.

The cell phone sampling method used in CHIS has evolved significantly since its first implementation in 2007 when only cell numbers belonging to adults in cell-only households were eligible for sampling adults. These changes reflect the rapidly changing nature of cell phone ownership and use in the US.² There have been three significant changes to the cell phone sample since 2009. First, all cell phone sample numbers used for non-business purposes by adults living in California were eligible for the extended interview. Thus, adults in households with landlines who had their own cell phones or shared

² http://www.cdc.gov/nchs/data/nhis/earlyrelease/wireless201605.pdf

one with another adult household member could have been selected through either the cell or landline sample. The second change was the inclusion of child and adolescent extended interviews. The third, enacted in CHIS 2015-2016 was to increase the fraction of the sample comprised of cell phones from 20% to 50% of completed interviews.

1. Los Angeles	7. Alameda	27. Shasta
1.1 Antelope Valley	8. Sacramento	28. Yolo
1.2 San Fernando Valley	9. Contra Costa	29. El Dorado
1.3 San Gabriel Valley	10. Fresno	30. Imperial
1.4 Metro	11. San Francisco	31. Napa
1.5 West	12. Ventura	32. Kings
1.6 South	13. San Mateo	33. Madera
1.7 East	14. Kern	34. Monterey
1.8 South Bay	15. San Joaquin	35. Humboldt
2. San Diego	16. Sonoma	36. Nevada
2.1 N. Coastal	17. Stanislaus	37. Mendocino
2.2 N. Central	18. Santa Barbara	38. Sutter
2.3 Central	19. Solano	39. Yuba
2.4 South	20. Tulare	40. Lake
2.5 East	21. Santa Cruz	41. San Benito
2.6 N. Inland	22. Marin	42. Colusa, Glen, Tehama
3. Orange	23. San Luis Obispo	43. Plumas, Sierra, Siskiyou,
4. Santa Clara	24. Placer	Lassen, Modoc, Trinity, Del Norte
5. San Bernardino	25. Merced	44. Mariposa, Mono, Tuolumne,
6. Riverside	26. Butte	Alpine, Amador, Calaveras, Inyo

Table 1-1. California county and county group strata used in the CHIS 2015-2016 sample design

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

The cell phone sample design and targets by stratum of the cell phone sample have also changed throughout the cycles of the survey. In CHIS 2007, a non-overlapping dual-frame design was implemented where cell phone only users were screened and interviewed in the cell phone sample. Beginning in 2009, an overlapping dual-frame design has been implemented. In this design, dual phone users (e.g., those with both cell and landline service) can be selected and interviewed from either the landline or cellphone samples.

The number of strata has also evolved as more information about cell numbers has become available. In CHIS 2007, the cell phone frame was stratified into seven geographic sampling strata created using telephone area codes. In CHIS 2009 and 2011-2012, the number of cell phone strata was increased to 28. These strata were created using both area codes and the geographic information assigned to the number. Beginning in CHIS 2011, with the availability of more detailed geographic information, the number of strata was increased to 44 geographic areas that correspond to single and grouped counties similar to the landline strata. The use of 44 geographic strata continued in CHIS 2015-2016.

1.4 Data Collection

To capture the rich diversity of the California population, interviews were conducted in six languages: English, Spanish, Chinese (Mandarin and Cantonese dialects), Vietnamese, Korean, and Tagalog. Tagalog interviews were conducted for part of the CHIS 2013-2014 cycle, but 2015-2016 were the first cycle years that Tagalog interviewers were conducted from the beginning of data collection. These languages were chosen based on analysis of 2010 Census data to identify the languages that would cover the largest number of Californians in the CHIS sample that either did not speak English or did not speak English well enough to otherwise participate.

RTI International designed the methodology and collected data for CHIS 2015-2016, under contract with the UCLA Center for Health Policy Research. RTI is an independent, nonprofit institute that provides research, development, and technical services to government and commercial clients worldwide, with specialization in designing and implementing large-scale sample surveys. For all sampled households, RTI staff interviewed one randomly selected adult in each sampled household, and sampled one adolescent and one child if they were present in the household and the sampled adult was their parent or legal guardian. Thus, up to three interviews could have been completed in each household. Children and adolescents were generally sampled at the end of the adult interview. If the screener respondent was someone other than the sampled adult, children and adolescents could be sampled as part of the screening interview, and the extended child (and adolescent) interviews could be completed before the adult interview. This "child-first" procedure was first used in CHIS 2005 and has been continued in subsequent CHIS cycles because it substantially increases the yield of child interviews. While numerous subsequent attempts were made to complete the adult interview for child-first cases, the final data contain completed child and adolescent interviews in households for which an adult interview was not completed. Table 1-2 shows the number of completed adult, child, and adolescent interviews in CHIS 2015-2016 by the type of sample (landline RDD, surname list, cell RDD, and ABS). Note that these figures were accurate as of data collection completion and may differ slightly from numbers in the data files due to data cleaning and

edits. Sample sizes to compare against data files you are using are found online at <u>http://healthpolicy.ucla.edu/chis/design/Pages/sample.aspx</u>.

Interviews in all languages were administered using RTI's computer-assisted telephone interviewing (CATI) system. The average adult interview took about 41 minutes to complete. The average child and adolescent interviews took about 19 minutes and 22 minutes, respectively. For "childfirst" interviews, additional household information asked as part of the child interview averaged about 12 minutes. Interviews in non-English languages typically took somewhat longer to complete. More than 13 percent of the adult interviews were completed in a language other than English, as were about 24 percent of all child (parent proxy) interviews and 25 percent of all adolescent interviews.

Type of sample ¹	Adult ²	Child	Adolescent
Total all samples	42,089	4,293	1,594
Landline RDD	15,106	1,178	542
Vietnamese surname list	3,558	316	111
Korean surname list	1,772	130	64
Japanese surname list	631	34	25
Cell RDD	19,722	2,521	807
Marin County Oversample ³	1,042	83	33
Imperial County ABS Oversample	258	31	12

Table 1-2. Number of completed CHIS 2015-2016 interviews by type of sample and instrument

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

¹ Completed interviews listed for each sample type refer to the sampling frame from which the phone number was drawn. Interviews could be conducted using numbers sampled from a frame with individuals who did not meet the target criteria for the frame but were otherwise eligible residents of California. Interviews from the Marin County oversample include respondents who did not live in this county and interviews from the Vietnamese, Korean, or Japanese surname lists include respondents who do not have one of these ethnicities. For example, only 182 of the 3,558 adult interviews completed from the Vietnamese surname list involved respondents who indicated being having Vietnamese ethnicity.

² Includes interviews meeting the criteria as partially complete,

³Completed interviews for the Marin County oversample do not include interviews completed via the Vietnamese surname list frame. These interviews are counted in the row for the Vietnamese surname list.

Table 1-3 shows the major topic areas for each of the three survey instruments (adult, child, and adolescent).

Health status	Adult	Teen	Child
General health status	\checkmark	\checkmark	\checkmark
Days missed from school due to health problems		\checkmark	\checkmark
Health-related quality of life (HRQOL)	\checkmark	\checkmark	
Health conditions	Adult	Teen	Child
Asthma	\checkmark	\checkmark	\checkmark
Diabetes, gestational diabetes, pre- /borderline diabetes	\checkmark		
Heart disease, high blood pressure, stroke	\checkmark		
Physical, behavioral, and/or mental conditions			\checkmark
Physical disabilities, blindness, deafness	\checkmark		
Mental health	Adult	Teen	Child
Mental health status	\checkmark	√	
Perceived need, access and utilization of mental health services	\checkmark	\checkmark	
Suicide ideation and attempts	\checkmark	\checkmark	
Functional impairment, stigma	\checkmark		
Health behaviors	Adult	Teen	Child
Dietary intake, fast food and soda intake	\checkmark	\checkmark	\checkmark
Water Consumption		\checkmark	
Physical activity and exercise, commute from school to home		\checkmark	\checkmark
Sedentary time		\checkmark	\checkmark
Walking for transportation and leisure	\checkmark		
Doctor discussed nutrition/physical activity		\checkmark	\checkmark
Flu Shot	\checkmark	\checkmark	\checkmark
Alcohol use	\checkmark	\checkmark	
Cigarette and E-cigarette use	\checkmark	\checkmark	
Sexual behavior	\checkmark	\checkmark	
Breastfeeding			\checkmark
Women's health	Adult	Teen	Child
Mammography screening	\checkmark		
Pregnancy	\checkmark		
Dental health	Adult	Teen	Child
Last dental visit, main reason haven't visited dentist	✓	\checkmark	\checkmark

Table 1-3. CHIS 2015-2016 survey topic areas by instrument

(continued)

Neighborhood and housing	Adult	Teen	Child
Safety, social cohesion	\checkmark	\checkmark	\checkmark
Homeownership, length of time at current residence	\checkmark		
Park use		\checkmark	\checkmark
Civic engagement	\checkmark	\checkmark	
Building Healthy Communities	\checkmark		
Access to and use of health care	Adult	Teen	Child
Usual source of care, visits to medical doctor	✓	✓	✓
Emergency room visits	\checkmark	\checkmark	\checkmark
Delays in getting care (prescriptions and medical care)	\checkmark	\checkmark	\checkmark
Medical home, timely appointments, hospitalizations	\checkmark	\checkmark	\checkmark
Developmental screening			\checkmark
Communication problems with doctor	\checkmark		\checkmark
Internet use for health information	\checkmark		\checkmark
Tele-medical care	\checkmark		
Family planning	\checkmark		
Change of usual source of care	\checkmark		
Food environment	Adult	Teen	Child
Access to fresh and affordable foods	\checkmark		
Where teen/child eats breakfast/lunch, fast food at school		\checkmark	\checkmark
Availability of food in household over past 12 months	\checkmark		
Hunger	\checkmark		
Health insurance	Adult	Teen	Child
Current insurance coverage, spouse's coverage, who pays for coverage	\checkmark	\checkmark	\checkmark
Health plan enrollment, characteristics and plan assessment	\checkmark	\checkmark	\checkmark
Whether employer offers coverage, respondent/spouse eligibility	\checkmark		
Coverage over past 12 months, reasons for lack of insurance	\checkmark	\checkmark	\checkmark
Difficulty finding private health insurance	\checkmark		
High deductible health plans	\checkmark	\checkmark	\checkmark
Partial scope Medi-Cal	\checkmark		

Table 1-3. CHIS 2015-2016 survey topic areas by instrument (continued)

(continued)

Public program eligibility	Adult	Teen	Child
Household poverty level	\checkmark		
Program participation (CalWORKs, Food Stamps, SSI, SSDI, WIC, TANF)	\checkmark	√	\checkmark
Assets, alimony/child support, social security/pension, worker's compensation	\checkmark		
Medi-Cal and Healthy Families eligibility	\checkmark	\checkmark	\checkmark
Reason for Medi-Cal non-participation among potential beneficiaries	\checkmark	\checkmark	\checkmark
Bullying and interpersonal violence	Adult	Teen	Child
Bullying, personal safety, school safety, interpersonal violence		\checkmark	
Parental involvement/adult supervision	Adult	Teen	Child
Adult presence after school, role models, resiliency		\checkmark	
Parental involvement		\checkmark	
Child care and school attendance	Adult	Teen	Child
Current child care arrangements Paid child care Preschool/school attendance, name of school Preschool quality School instability First 5 California: "Talk Read Sing Program"	✓	√ √	✓ ✓ ✓
Employment	Adult	Teen	Child
Employment status, spouse's employment status Hours worked at all jobs	✓ ✓		
Income	Adult	Teen	Child
Respondent's and spouse's earnings last month before taxes	√		
Household income, number of persons supported by household income		Toon	Child
Respondent characteristics	Adult	Teen	
Race and ethnicity, age, gender, height, weight Veteran status Marital status, registered domestic partner status (same-sex couples) Sexual orientation Education, English language proficiency	\checkmark	V	V
Citizenship, immigration status, country of birth, length of time in U.S.,	\checkmark	\checkmark	\checkmark
languages spoken at home Education of primary caretaker			\checkmark
Citizenship, immigration status, country of birth, and length of time in			
U.S. of parents			*

Table 1-3. CHIS 2015-2016 survey topic areas by instrument (continued)

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

1.5 Responsive and Adaptive Design Elements

The CHIS 2015 and 2016 data collection protocol included the following two responsive design protocols to maximize response rates, provide protection against nonresponse bias, and control data collection costs:

- 1) a propensity model experiment in the first phase of each quarterly data collection that identified a set of cases with low propensities to discontinue calling for the remainder of Phase 1
- a second nonresponse follow-up (NRFU) phase in each quarterly data collection period where a different protocol was implemented to increase response rates and reduce the risk of nonresponse bias.

Additional documentation on the responsive design protocols and outcomes is available in the *CHIS 2015-2016 Methodology Series: Report 2—Data Collection Methods* posted at <u>http://healthpolicy.ucla.edu/chis/design/Pages/methodology.aspx.</u>

1.6 Response Rates

The overall response rates for CHIS 2015 and 2016 are composites of the screener completion rate (i.e., success in introducing the survey to a household and randomly selecting an adult to be interviewed) and the extended interview completion rate (i.e., success in getting one or more selected persons to complete the extended interview). For CHIS 2015, the landline/list sample household response rate was 9.1 percent (the product of the screener response rate of 21.0 and the extended interview response rate at the household level of 43.2 percent). The cell sample household response rate was 9.8 percent, incorporating a screener response rate of 21.5 percent household-level extended interview response rate of 45.9 percent. For CHIS 2016, the landline/list sample household response rate was 6.8 percent (the product of the screener response rate of 15.5 and the extended interview response rate at the household level of 44.0 percent). The cell sample household response rate at the household level of 44.0 percent). The cell sample household response rate of 45.4 percent. CHIS uses AAPOR response rate RR4 (see more detailed in *CHIS 2015-2016 Methodology Series: Report 4 – Response Rates*).

Within the landline and cell phone sampling frames for 2015, the extended interview response rate for the landline/list sample varied across the adult (41.8 percent), child (44.7 percent) and adolescent (17.1 percent) interviews. For 2016, the extended interview response rate for the landline/list sample varied across the adult (41.3 percent), child (69.6 percent) and adolescent (17.9 percent) interviews. The adolescent rate includes the process of obtaining permission from a parent or guardian. The adult

interview response rate for the cell sample was 48.5 percent, the child rate was 43.9 percent, and the adolescent rate was 17.4 percent in 2015 (see Table 1-4a). The adult interview response rate for the cell sample was 46.9 percent, the child rate was 59.7 percent, and the adolescent rate was 21.6 percent in 2016 (see Table 1-4c). Multiplying these rates by the screener response rates used in the household rates above gives an overall response rate for each type of interview for each survey year (see Table 1-4b and Table 1-4d, respectively). As in previous years, household and person level response rates vary by sampling stratum. CHIS response rates are similar to, and sometimes higher than, other comparable surveys that interview by telephone.

Table 1-4a.	CHIS 2015	response rates -	Conditional
-------------	-----------	------------------	-------------

Type of sample	Screener	Household	Adult (given screened)	Child (given screened)	Adolescent (given screened & permission)
Overall	21.4%	45.2%	47.2%	44.0%	17.3%
Landline RDD	21.0%	43.2%	41.8%	44.8%	17.1%
Cell RDD	21.5%	45.9%	48.5%	43.9%	17.4%

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

Type of sample	Screener	Household	Adult (given screened)	Child (given screened)	Adolescent (given screened & permission)
Overall	21.4%	9.7%	10.1%	9.4%	3.7%
Landline RDD	21.0%	9.1%	8.8%	9.4%	3.6%
Cell RDD	21.5%	9.8%	10.4%	9.4%	3.7%

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

Table 1-4c. CHIS	2016 res	ponse rates –	Conditional
------------------	----------	---------------	-------------

Type of sample	Screener	Household	Adult (given screened)	Child (given screened)	Adolescent (given screened & permission)
Overall	17.8%	45.1%	44.6%	63.0%	20.0%
Landline RDD	15.5%	44.0%	41.3%	69.6%	17.9%
Cell RDD	18.5%	45.4%	46.9%	59.7%	21.6%

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

Type of sample	Screener	Household	Adult (given screened)	Child (given screened)	Adolescent (given screened & permission)
Overall	17.8%	8.0%	7.9%	11.2%	3.6%
Landline RDD	15.5%	6.8%	6.4%	10.8%	2.8%
Cell RDD	18.5%	8.4%	8.7%	11.1%	4.0%

Table 1-4d. CHIS 2016 response rates – Unconditional

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

To maximize the response rate, especially at the screener stage, an advance letter in five languages was mailed to all landline sampled telephone numbers for which an address could be obtained from reverse directory services. An advance letter was mailed for 34.5 percent of the landline RDD sample telephone numbers not identified by the sample vendor as business numbers or not identified by RTI's dialer software as nonworking numbers, and for 92.3 percent of surname list sample

Table 1-5.2015-2016 CHIS incentives by interview
type

Type of interview	Adult
Cell Phone Screener	\$5
Cell Phone Adult Interview	\$20
Cell Phone Child Interview	\$10
Cell Phone Teen Interview	\$10
Nonresponse Follow-Up Adult Interview	\$40
Nonresponse Follow-Up Child Interview	\$20
Nonresponse Follow-Up Teen Interview	\$20

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

numbers. Combining these two frames, advance letters were sent to 40.5 percent of all fielded landline telephone numbers. Addresses were not available for the cell sample. As in all CHIS cycles since CHIS 2005, a \$2 bill was included with the CHIS 2015-2016 advance letter to encourage cooperation. Additional incentives were offered to cell phone and Phase 2 nonresponse follow up (NRFU) respondents. Details on the incentives are provided in Table 1-5.

After all follow-up attempts to complete the full questionnaire were exhausted, adults who completed at least approximately 80 percent of the questionnaire (i.e., through Section K which covers employment, income, poverty status, and food security), were counted as "complete." At least some responses in the employment and income series, or public program eligibility and food insecurity series were missing from those cases that did not complete the entire interview. They were imputed to enhance the analytic utility of the data.

Proxy interviews were conducted for any adult who was unable to complete the extended adult interview for themselves, in order to avoid biases for health estimates of chronically ill or handicapped people. Eligible selected persons were re-contacted and offered a proxy option. In the 2015-2016 CHIS, either a spouse/partner or adult child completed a proxy interview for 274 adults. A reduced questionnaire, with questions identified as appropriate for a proxy respondent, was administered.

Further information about CHIS data quality and nonresponse bias is available at <u>http://healthpolicy.ucla.edu/chis/design/Pages/data-quality.aspx</u>.

1.7 Weighting the Sample

To produce population estimates from CHIS data, weights were applied to the sample data to compensate for the probability of selection and a variety of other factors, some directly resulting from the design and administration of the survey. The sample was weighted to represent the non-institutionalized population for each sampling stratum and statewide. The weighting procedures used for CHIS 2015-2016 accomplish the following objectives:

- Compensate for differential probabilities of selection for phone numbers (households) and persons within household;
- Reduce biases occurring because nonrespondents may have different characteristics than respondents;
- Adjust, to the extent possible, for undercoverage in the sampling frames and in the conduct of the survey;
- Reduce the variance of the estimates by using auxiliary information; and
- Account for the second-phase sampling that was part of the responsive and adaptive design (Phase 2 NRFU).

As part of the weighting process, a household weight was created for all households that completed the screener interview. This household weight is the product of the "base weight" (the inverse of the probability of selection of the telephone number) and a variety of adjustment factors. The household weight was used to compute a person-level weight, which includes adjustments for the withinhousehold sampling of persons and for nonresponse. The final step was to adjust the person-level weight using weight calibration, a procedure that forced the CHIS weights to sum to estimated population control totals simultaneously from an independent data source (see below).

Population control totals of the number of persons by age, race, and sex at the stratum level for CHIS 2015-2016 were created primarily from the California Department of Finance's (DOF) 2015 and

2016 Population Estimates, and associated population projections. The procedure used several dimensions, which are combinations of demographic variables (age, sex, race, and ethnicity), geographic variables (county, Service Planning Area in Los Angeles County, and Health Region in San Diego County), and education. One limitation of using Department of Finance (DOF) data is that it includes about 2.4 percent of the population of California who live in "group quarters" (i.e., persons living with nine or more unrelated persons and includes, for example nursing homes, prisons, dormitories, etc.). These persons were excluded from the CHIS target population and, as a result, the number of persons living in group quarters was estimated and removed from the Department of Finance control totals prior to calibration.

The DOF control totals used to create the CHIS 2015 and 2016 weights are based on 2010 Census counts, as were those used for the 2013-2014 cycle. Please pay close attention when comparing estimates using CHIS 2015-2016 data with estimates using data from CHIS cycles before 2010. The most accurate California population figures are available when the U.S. Census Bureau conducts the decennial census. For periods between each census, population-based surveys like CHIS must use population projections based on the decennial count. For example, population control totals for CHIS 2009 were based on 2009 DOF estimates and projections, which were based on Census 2000 counts with adjustments for demographic changes within the state between 2000 and 2009. These estimates become less accurate and more dependent on the models underlying the adjustments over time. Using the most recent Census population count information to create control totals for weighting produces the most statistically accurate population estimates for the current cycle, but it may produce unexpected increases or decreases in some survey estimates when comparing survey cycles that use 2000 Census-based information and 2010 Census-based information.

1.8 Imputation Methods

Missing values in the CHIS data files were replaced through imputation for nearly every variable. This was a substantial task designed to enhance the analytic utility of the files. RTI imputed missing values for those variables used in the weighting process and UCLA-CHPR staff imputed values for nearly every other variable.

Two different imputation procedures were used by RTI to fill in missing responses for items essential for weighting the data. The first imputation technique was a completely random selection from the observed distribution of respondents. This method was used only for a few variables when the percentage of the items missing was very small. The second technique was hot deck imputation. The hot deck approach is one of the most commonly used methods for assigning values for missing responses. Using a hot deck, a value reported by a respondent for a specific item was assigned or donated to a "similar" person who did not respond to that item. The characteristics defining "similar" vary for different variables. To carry out hot deck imputation, the respondents who answered a survey item formed a pool of donors, while the item nonrespondents formed a group of recipients. A recipient was matched to the subset pool of donors based on household and individual characteristics. A value for the recipient was then randomly imputed from one of the donors in the pool. RTI used hot deck imputation to impute the same items that have been imputed in all CHIS cycles since 2003 (i.e., race, ethnicity, home ownership, and education).

UCLA-CHPR imputed missing values for nearly every variable in the data files other than those imputed by RTI and some sensitive variables for which nonresponse had its own meaning. Overall, item nonresponse rates in CHIS 2015 and CHIS 2016 were low, with most variables missing valid responses for less than 1% of the sample.

The imputation process conducted by UCLA-CHPR started with data editing, sometimes referred to as logical or relational imputation: for any missing value, a valid replacement value was sought based on known values of other variables of the same respondent or other sample(s) from the same household. For the remaining missing values, model-based hot-deck imputation without donor replacement was used. This method replaced a missing value for one respondent using a valid response from another respondent with similar characteristics as defined by a generalized linear model with a set of control variables (predictors). The link function of the model corresponded to the nature of the variable being imputed (e.g. linear regression for continues variables, logistic regression for binary variables, etc.). Donors and recipients were grouped based on their predicted values from the model.

Control variables (predictors) used in the model to form donor pools for hot-decking always included standard measures of demographic and socioeconomic characteristics, as well as geographic region; however, the full set of control variables varies depending on which variable is being imputed. Most imputation models included additional characteristics, such as health status or access to care, which are used to improve the quality of the donor-recipient match. Among the standard list of control variables, gender, age, race/ethnicity and region of California were imputed by RTI. UCLA-CHPR began their imputation process by imputing household income and educational attainment, so that these characteristics are available for the imputation of other variables. Sometimes CHIS collects bracketed information about the range in which the respondent's value falls when the respondent will not or cannot

report an exact amount. Household income, for example, was imputed using the hot-deck method within ranges defined by a set of auxiliary variables such as bracketed income range and/or poverty level.

The imputation order of the other variables generally followed the questionnaire. After all imputation procedures were complete, every step in the data quality control process was performed once again to ensure consistency between the imputed and non-imputed values on a case-by-case basis.

2. DATA EDITING PROCEDURES

Survey data for all CHIS 2015-2016 samples – landline and cellular RDD, surname list, and supplemental address-based sample (ABS) in Imperial County – were collected using the same computer-assisted telephone interview (CATI) system. While the screening interview varied somewhat by sample, the same editing procedures were followed for all CHIS 2015-2016 cases.

In a CATI environment, the data collection and interview process is controlled using a series of computer programs to ensure consistency and quality. (*CHIS 2015-2016 Methodology Series: Report 2 - Data Collection Methods* provides a thorough discussion of the interview process and a description of how the survey data were collected.) The CATI system programming determines which questions are asked based on household composition, respondent characteristics or preceding answers, and the order in which the questions are presented to interviewers. The system also presents the response options available for recording answers.

CATI range and logic edits help ensure the integrity of the data during collection. Editing at the time of the interview greatly reduces the need for post-interview editing, and allows most questionable entries to be reviewed in real time with the respondent as part of the collection process. Although the CATI system virtually eliminates out-of-range responses and many other anomalies, some consistency and edit issues may arise. For example, interviewers may note concerns or problems that must be handled by data preparation staff after the interview is complete. Updating activities include both manual and machine editing procedures to correct interviewer, respondent, and CATI program errors and to check that updates made by data preparation staff are input correctly. Because data editing results in changes to the survey data, specific quality control procedures were implemented. CHIS 2015-2016 survey data were examined and edited before RTI delivered final data files to UCLA. Quality control procedures involved limiting the number of staff who made updates, using the CATI specifications to resolve issues in complex questionnaire sections, carefully checking updates, and performing simulation computer runs to identify inconsistencies or illogical patterns in the data.

The data editing procedures for CHIS 2015-2016 consisted of three main tasks: (1) managing and resolving problem cases, (2) coding question responses that were recorded as text strings (i.e., "up-coding" responses captured in "other specify" fields), and (3) verifying data editing updates. The final step was to convert the edited data from the CATI system to the SAS data delivery files. The sections below describe each of these processes in turn.

2-1

2.1 Resolving Problem Cases

One important task for ensuring high-quality data was managing and resolving problem cases. The data preparation staff, as well as project staff and CATI staff, worked collectively to resolve problem cases. The method interviewers used to communicate problems is described in this section, along with the system used by data editing and preparation staff to update or modify the data.

An interviewer who experienced a problem while working a case could alert the project team in one of two ways. One method was to fill out an electronic problem sheet for the case. All problem sheets were transmitted to a single staff member who distributed them to the appropriate department or project staff person. Data preparation staff often used these problem sheets as a guide to review cases and to make certain that any required updates were made accurately.

The second method of communicating problems was to assign a specific result code to cases within the CATI system. Problem cases were reviewed electronically by a Research Operations Center (ROC) supervisor and either re-fielded to the interviewing staff or distributed to the appropriate staff for resolution. The problem result code category had three sub-categories to indicate the RTI staff person or group responsible for investigating the case further—1) ROC staff who work directly with the interviewers, 2) project staff who oversee survey design and implementation, or 3) data cleaning and processing staff.

Not all problems required CATI database updates. Some could be resolved by simply releasing the case for general interviewing with a message telling the interviewer what to do. If, for example, an adult extended interview was stopped during the middle of Section E, the interviewer would enter a detailed comment explaining why the case could not proceed (e.g., "Respondent wanted to change several answers. I was unable to back up properly."). The solution for these types of cases was to re-field the interview and all questions in Section E could be asked again. Most restart cases were made available to the general interviewing staff. For unusual or complex problems, the case could be assigned to a specific interviewer with experience in handling these types of problems.

Some examples of cases reviewed by RTI project staff were those in which an error was made in enumerating a household member or when a change in the person named as most knowledgeable about the sampled child was needed. Other types of problems required special interviewer handling, even after changes were made to the CATI database. One specific category of problems—enumeration errors where some household members were either incorrectly identified or their characteristics were entered in error—was somewhat more challenging than other types of errors to resolve. If enough information was not available to complete the screener accurately the data manager could reload the case by using a utility created for CHIS and allow the next interviewer to enter data anew.

2.2 Interviewer Comments

Another important data editing task is reviewing comments interviewers enter in a window accessed by a CATI "hot key." Comments are used to record answers and statements that don't fit into programmed response options. Some comments merely elaborate on previously-recorded responses, express an opinion, or are otherwise not directly related to the survey. These kinds of comments usually do not require modifying or updating survey responses. In other situations, substantive comments indicate that a data update is needed. For example, if the weight that a respondent reports is outside the predetermined acceptable range programmed in CATI, the interviewer would first ask the respondent to confirm the response, then would enter "Don't Know" as the answer in CATI, and then would add a comment with the respondent's actual weight. In this case, the data preparation staff reviewing the comment later would enter the correct weight value into the CATI data file.

2.3 Coding with Text Strings

Most items in CHIS 2015-2016 had only close-ended response options, but several of them had the option of entering an 'other-specify' response that required coding of narrative text strings recorded by interviewers. For example, question AA5 in the adult extended interview was asked of respondents who had reported being of Hispanic or Latino ancestry or origin: "And what is your Latino or Hispanic ancestry or origin? Such as Mexican, Salvadoran, Cuban, Honduran -- and if you have more than one, tell me all of them." The list of potential responses in AA5 included 10 different nationalities, and interviewers could use an "other (specify:)" category for responses outside this list. Additional questions with an "other (specify:)" category from the CHIS 2015-2016 adult extended interview included:

- Racial/ethnic ancestry (AA5, AA5A, AA5E, AA5E1);
- Tribal names (AA5B, AA5D);
- Sexual orientation (AD46);
- Country of birth (AH33, AH34, AH35);
- Languages spoken at home (AH36);
- Usual place visited for health care (AH3);

- Usual place where buy cigarettes (AC55);
- Reasons for using E-cigarettes (AC83);
- Rules about smoking inside home (AC84);
- Industry and Occupation (AK5, AK6);
- Health insurance coverage items (AI15, KAI15, AI15A, KAI15A, AI17A, KAI17A, AI45, KAI45, AI45A, KAI45A, AI36, KAI36, AI24, KAI24, AL19, AH104 KAH104, AH105, KAH105, AH106, KAH106, AH122, KAH122, AH101, KAH101, AH114, KAH114, AH121, KAH121);
- Child/adolescent health insurance coverage items (CF7, KCF7, CF18, KCF18, IA18, KIA18, CF29, KCF29, IA29, KIA29, CF1A, CF2A, KCF2A, IA1A, KIA1A, IA2A, KIA2A, IA7, KIA7, AI90, KAI90, AI91, KAI91, AI92, KAI92, AI115, KAI115, AI94, KAI94, AI95, KAI95, AI96, KAI96, AI116, KAI116).
- Adult/child/adolescent Insurance plan names (AH50, AI22A, MA2, MA7, KAH50, KAI22A, KMA2, KMA7);
- Reason no longer receiving behavioral health treatment (AF80);
- Country of birth (AI56, AI56C, AI56T);
- Language used by doctor to speak to respondent (AJ50);
- Reason for delay in getting needed health care (AJ131);
- Main birth control method: female (AJ142);
- Where received birth control method: female (AJ143);
- Where received birth control method: male (AJ146).

Questions with an "other (specify:)" category in the child and adolescent interviews:

- Child condition or disability (CA10A);
- Adolescent race and ethnicity (TI1A, TI2, TI2A, TI2C, TI2D, TI2D1);
- Child race and ethnicity (CH2, CH3, CH4, CH6, CH7, CH7A);
- Child/adolescent languages spoken at home (CH17, TI7);
- Child/mother/father place of birth (CH8, CH11, CH14);
- Adolescent country of birth (TI3);
- Child/adolescent school name/type of school (CB22, CB22TYPE, TA4B, TA4BTYPE);
- Reason for adolescent to have changed school (TA7);
- Grade attending in school currently/last time in school (TA8, TA9);
- Extra-curricular activities in school (TL20);

- Child/adolescent usual source of health care (CD3, TF2);
- Child/adolescent reason for delay in getting health care (CD68, TH59);
- Language used by child's doctor to talk to parent (CD31);
- Reasons for using E-cigarettes (TE68).

RTI data preparation staff reviewed these responses and up-coded them to existing categories whenever possible. Text responses were also reviewed to remove indications to respondents' names (or initials) and to summarize long responses.

Soft-range edits were activated during the interview when the respondent gave an unlikely response (a value outside the specified range). The CATI system responded by placing a message on the screen and required the interviewer to re-enter the response. This system feature gives the interviewer an opportunity to verify that the response is recorded accurately or re-ask the question to be certain the respondent understood what was being asked as needed. Hard-range edits prevented recording unacceptable values. For example, for a question on how many glasses of juice the adolescent respondent had the previous day, the soft range is 0-9, the hard range 0-20.

When a respondent insisted on giving a response that violated the hard-edit specifications, interviewers recorded the answer in the comment field, and data preparation staff reviewed and updated the case as needed.

2.4 Verifying Data Updates

Updates to the original interview data were required in a variety of circumstances as described above. A series of techniques verified that the data were updated accurately. The CATI case identification number was also recorded to ensure that updates were associated with the appropriate case. A printout was created and checked for accuracy, effects on any other questions, or logical skip patterns in the questionnaire. For more complicated circumstances, the data preparation staff carefully reviewed interviewer comments, messages, and problem descriptions to verify data updates.

Cases with similar problems were reviewed and updated together in manageable batches to ensure consistency in handling data problems. Following the series of updates, a program checked for all errors identified to date to ensure that editing had not created new errors. Frequency distributions and cross-tabulations were used extensively by data preparation staff to verify data updates. Structural edits assessed the integrity of the CATI database (e.g., verifying that all database records that should exist existed, and those that should not exist did not), and edits that evaluated complex skip patterns were run periodically during data collection. When discrepancies were discovered, problem cases were reviewed and updated as necessary.

3. GEOGRAPHIC CODING

For CHIS 2015-2016, RTI delivered geo-coded survey data for any household where at least one interview had been completed, identifying the approximate (i.e., not "rooftop") location of the respondent's residence. The self-reported county was used to assign cases to landline sample strata as described in *CHIS 2015-2016 Methodology Series: Report 1 – Sample Design*. RTI also prepared and delivered more specific geocodes based on the respondent-reported address and other information. The geographic coding process for CHIS 2015-2016 used Esri's ArcGISdesktop software that calls upon the Business Analyst extension database to geocode the CHIS addresses. Esri's geocoder tool utilizes the Business Analyst data using an address-based approach with more than 54 million residential and commercial US-based addresses. The Business Analyst data is compiled from the Tele Atlas Address Points database.

3.1 County of Residence

The CHIS 2015-2016 adult extended interview asked all respondents the name of the county where they lived: "To be sure we are covering the entire state, what county do you live in?" (AH42). In addition, for cases in which an address had been matched to the sampled telephone number³, interviewers verified the street address and ZIP code with the adult respondent (AO1) and then collected the name of a nearby cross-street (AM9). These same questions were asked of adults who completed the child interview under the "child first" protocol. The child-first protocol allowed completion of the child interview before the adult extended interview was conducted. (See *CHIS 2015-2016 Methodology Series: Report 2 – Data Collection Methods* for details regarding the child-first protocol.)

If there was no matched address for a given case, respondents were asked to provide their ZIP code (AM7), their street address (AO2) and then the name of the nearest cross-street (AM9). Adult respondents who refused to provide a complete street address with house number were asked just for the name of the street they lived on (AM8) and the nearest cross street.

Because telephone numbers were assigned to sampling strata based on the telephone area code and exchange (see *CHIS 2015-2016 Methodology Series: Report 1 - Sample Design*), and some exchanges serve more than one county or city, the actual stratum where the respondent resides may differ from the sampling stratum. Both to monitor the sample yield during data collection and to ensure that the

³ The verification was not done if the telephone number was unlisted or if the sample vendor indicated that the number was on the "do not call" list.

analysis file reflects the sampled person's actual residence, it was important to assign each adult who completed the extended interview to the correct stratum that the adult self-reported as the residence.

The following two questions were asked toward the end of the adult extended interview and were used to make the self-reported stratum assignment that is used for data collection targets:

- AH42. "To be sure we are covering the entire state, what county do you live in?" and
- AM7. "What is your ZIP code?"

The final self-reported stratum included in the final data file was determined by applying the geocodes developed RTI staff as described below. See *CHIS 2015-2016 Methodology Series: Report 5 - Weighting and Variance Estimation*, Section 8.4.5, for a fuller discussion of this process.

The final distribution of completed landline sample adult extended interview cases by selfreported and original sampling stratum is presented in Table 3-2 at the end of this chapter. Generally, the frequency counts show that there is good correspondence between the original sampling stratum and the self-reported stratum for the landline sample. The self-reported stratum may differ from the original sampling stratum, however, because the sampling stratum may have been incorrect or the respondent may have incorrectly reported the county of residence.

3.2 Geocoding Process

The geocoding for CHIS 2015-2016 was accomplished using the Esri ArcGISdesktop software package. First the software automatically matched the input addresses to a spatial database of roads, which returned the address's latitude/longitude, state FIPS and county FIPS.

When an exact location is not identified, additional matching techniques within the software will be employed:

- Address Points: The address is assigned to a fixed point physical location (80% minimum match score).
- Street Address: The matched address's position is a linear interpolation along the address range into which it falls. The household for the selected respondent should be shown on the correct street and usually the correct side of the street, but the actual location might be up to a few hundred feet either up or down the street as compared to where they are shown on the map. This method has a 72% minimum match score.

- Zip code: Located at the geographic center of the zip code area for that address. These locations are KNOWN to be highly inaccurate and not suitable for most applications.
- Rematching: Manually assigning locations to unmatched addresses or updating address inaccuracies when possible.

If the software was unable to match to the street address or linear interpolation of the street address, it automatically matched to the geographic ZIP centroid as a fallback. In such cases, the latitude/longitude, state FIPS code and county FIPS code of the ZIP code centroid was provided.

If a batch match was not obtained, RTI staff interactively examined the unmatched records (excluding PO boxes and rural routes) to try and determine the reason why the software could not automatically match the address. Sometimes this was due to misspelled street names, city names, etc., or to missing house numbers. RTI corrected the address to match the street database, or matched to the segment's nearest intersection. If the street address or nearest intersection could not be identified, RTI would then match to geographic ZIP centroid. If no zip code or address information was provided, a zip code was imputed using hot-deck imputation with area code, stratum and county as imputation classes. The frequencies of assigned geocodes by rule and sample type are shown in Table 3-1.

Rule	Cell	Land	Japanese	Korean	Vietnamese	Total
1 - Address assigned to a fixed point physical location	11,157	10,706	553	1,387	2,221	26,024
2 - Matched by linear interpolation along address range into which it falls	3,540	2,264	53	244	567	6,668
3 - Matched to ZIP centroid based on address	5,768	2,876	36	181	879	9,740
4 - Matched based on manual assignment of unmatched or inaccurate address	10	7	0	1	0	18
Total	20,475	15,853	642	1,813	3,667	42,450

 Table 3-1.
 Number of Geocodes Assigned by Rule and by Sample Type

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

Stratum name	Sampling stratum count	Removed	Added	Final self-reported stratum count
1 - LOS ANGELES	4,002	35	44	4,011
2 - SAN DIEGO	1,961	9	8	1,960
3 - ORANGE	1,206	34	15	1,187
4 - SANTA CLARA	911	7	15	919
5 - SAN BERNARDINO	642	11	14	645
6 - RIVERSIDE	1,019	7	17	1,029
7 - ALAMEDA	663	34	21	650
8 - SACRAMENTO	691	11	13	693
9 - CONTRA COSTA	489	14	35	510
10 - FRESNO	420	3	5	422
11 - SAN FRANCISCO	386	16	7	377
12 - VENTURA	430	4	15	441
13 - SAN MATEO	324	15	21	330
14 - KERN	352	3	2	351
15 - SAN JOAQUIN	229	1	3	231
16 - SONOMA	240	6	7	241
17 - STANISLAUS	263	6	2	259
18 - SANTA BARBARA	241	4	1	238
19 - SOLANO	247	12	2	237
20 - TULARE	249	4	1	246
21 - SANTA CRUZ	244	10	3	237
22 - MARIN	848	14	3	837
23 - SAN LUIS OBISPO	238	1	5	242
24 - PLACER	235	8	12	239
25 - MERCED	240	0	5	245
26 - BUTTE	227	5	14	236
27 - SHASTA	251	7	13	257
28 - YOLO	237	0	6	243
29 - EL DORADO	247	5	4	246
30 - IMPERIAL	265	2	3	266

Table 3-2.Final distribution of adult extended completed cases by self-reported and original sampling
stratum, landline/list sample for CHIS 2015-2016

(continued)

Stratum name	Sampling stratum count	Removed	Added	Final self-reported stratum count
31 - NAPA	280	5	11	286
32 - KINGS	274	4	0	270
33 - MADERA	243	4	3	242
34 - MONTEREY	245	6	12	251
35 - HUMBOLDT	246	6	1	241
36 - NEVADA	263	7	7	263
37 - MENDOCINO	233	5	1	229
38 - SUTTER	237	14	19	242
39 - YUBA	237	38	13	212
40 - LAKE	240	5	1	236
41 - SAN BENITO	282	3	4	283
42 - TEHAMA, ETC	183	13	4	174
43 - DEL NORTE, ETC	193	4	11	200
44 - TUOLUMNE, ETC	226	4	3	225

 Table 3-2.
 Final distribution of adult extended completed cases by self-reported and original sampling stratum, landline/list sample for CHIS 2015-2016 (continued)

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

Stratum name	Sampling stratu	m Removed	Added	Final self-reported
1 - LOS ANGELES	3.945	458	421	3.908
2 - SAN DIEGO	1,990	226	158	1,922
3 - ORANGE	894	173	196	917
4 - SANTA CLARA	672	161	153	664
5 - SAN BERNARDINO	526	138	292	680
6 - RIVERSIDE	942	206	248	984
7 - ALAMEDA	475	148	265	592
8 - SACRAMENTO	441	98	337	680
9 - CONTRA COSTA	407	95	176	488
10 - FRESNO	380	78	136	438
11 - SAN FRANCISCO	327	145	299	481
12 - VENTURA	260	37	87	310
13 - SAN MATEO	335	115	136	356
14 - KERN	358	45	101	414
15 - SAN JOAQUIN	249	54	85	280
16 - SONOMA	163	43	153	273
17 - STANISLAUS	322	89	61	294
18 - SANTA BARBARA	255	63	47	239
19 - SOLANO	206	63	107	250
20 - TULARE	264	51	64	277
21 - SANTA CRUZ	273	66	54	261
22 - MARIN	1,092	589	37	540
23 - SAN LUIS OBISPO	256	55	50	251
24 - PLACER	245	130	128	243
25 - MERCED	253	64	55	244
26 - BUTTE	184	45	126	265
27 - SHASTA	284	68	28	244
28 - YOLO	238	80	77	235
29 - EL DORADO	241	65	50	226
30 - IMPERIAL	292	72	17	237

Table 3-3.Final distribution of adult extended completed cases by self-reported and original sampling
stratum, cell phone sample for CHIS 2015-2016

(continued)

Stratum name	Sampling stratum count	Removed	Added	Final self-reported stratum count
31 - NAPA	281	91	33	223
32 - KINGS	276	86	18	208
33 - MADERA	282	69	19	232
34 - MONTEREY	166	24	96	238
35 - HUMBOLDT	213	21	37	229
36 - NEVADA	232	78	58	212
37 - MENDOCINO	275	51	26	250
38 - SUTTER	918	567	14	365
39 - YUBA	9	5	267	271
40 - LAKE	246	47	40	239
41 - SAN BENITO	296	108	13	201
42 - TEHAMA, ETC	168	43	114	239
43 - DEL NORTE, ETC	166	29	49	186
44 - TUOLUMNE, ETC	155	26	37	166

 Table 3-3. Final distribution of adult extended completed cases by self-reported and original sampling stratum, cell phone sample for CHIS 2015-2016 (continued)

Source: UCLA Center for Health Policy Research, 2015-2016 California Health Interview Survey.

3.3 School Names

CHIS 2015-2016 child and adolescent interviews collected the names of schools attended by selected children or adolescents (CB22 and TA4B, respectively). A sufficiently knowledgeable adult (SKA) reported the child's school name, and the sampled adolescent answered for him- or herself. Interviewers recorded the respondent's answers as a verbatim text entry.

A review of the child interview data showed several spelling problems associated with item CB22 ("What is the name of the school {CHILD NAME /AGE/SEX} goes to or last attended"?). In many problem cases, the English-speaking adult respondent was reporting a Spanish school name (and was speaking to an English-speaking interviewer). Respondents whose first language was not English had similar difficulties in accurately reporting or spelling school names. RTI performed spell-check and abbreviation corrections to the school names list and provided the cleaned lists to UCLA for further matching to the California School Directory.

4. INDUSTRY AND OCCUPATION CODING

This section describes the CHIS 2015-2016 Industry and Occupation (I&O) open-ended response coding process. The open-ended industry question was AK5 while occupation was AK6. The first step involved translating Spanish language open-ended responses into English.

After translation was completed, any records with an open-ended response to either AK5 or AK6 were submitted to the National Institutes for Occupational Safety and Health's (NIOSH) NIOSH Industry and Occupation Computerized Coding System (NIOCCS)⁴. This coding system was developed to translate English language text entries to standardized I&O codes. As stated in the online documentation, the I&O codes are "based on the Census Industry and Occupation Classification system supplemented with special codes developed by CDC/NIOSH for non-paid workers, non-workers, and the military⁵." This means that the codes are in the same four-digit format that the Census coding system utilizes. For this process, we used Census 2010 as the classification scheme. The data was submitted in batches of less than 10,000 records so that the computerized system would not time out.

In addition, the data was matched separately at both the high and medium confidence level thresholds. High confidence matches records with 90% or higher accuracy scores while the medium threshold matches records if they have 70% or higher accuracy scores. For CHIS 2015-2016 46.5% of industry responses matched under the high threshold with an additional 24.9% under the medium threshold. For occupation text 38.6% matched at the high threshold with an additional 27.9% matching under the medium threshold. Although 72.9% of records had either their industry or occupation response match using the NIOCCS system only 65.1% matched both their industry and occupation responses.

All remaining records that did not match both their industry and occupation responses using the NIOCCS system were sent to the Census National Processing Center (NPC) for coding using the Demographic Survey's Division (DSD) computer-assisted I&O coding system. Census coded industry using census codes based on the 2012 North American Industry Classification System. The occupation fields used census codes based on the 2010 Standard Occupational Classification Manual. First the fields are coded and then verified. With any discrepancies, the verifier made a determination. There was no third-party adjudication. Census NPC provided output files containing I&O codes for all remaining records.

⁴ <u>https://www.cdc.gov/niosh/topics/coding/overview.html</u>

⁵ https://www.cdc.gov/niosh/topics/coding/how.html

The Census I&O codes were combined with the NIOCCS system codes and appended to the adult data as the translated I&O coding responses for each record. In situations where both Census and NIOCCS codes existed for a record the Census code was retained. Otherwise, if both a medium threshold and high threshold NIOCCS code existed for a record, and they did not agree, the high threshold match was retained.

5. RACE AND ETHNICITY CODING

This chapter describes handling of race and ethnicity responses outside of the pre-existing categories. These "other (specify:)" responses were recorded as text strings, and were either "up-coded" into existing codes or left in the "other (specify:)" category.

The first question in the race and ethnicity series (question AA4 in the adult interview) asked if the respondent was Latino or Hispanic. If the response to this item was "yes," the next question (AA5) asked about the specific origin (Mexican, Cuban, etc.) and allowed an "other (specify:)" response entered as text in item AA5OS. Question AA5A then asked respondents for their race: "Please tell me which one or more of the following you would use to describe yourself. Would you describe yourself as Native Hawaiian, Other Pacific Islander, American Indian, Alaska Native, Asian, Black, African American, or White?" This item allowed multiple responses and included an "other race" category. The "other (specify:)" text was recorded in item AA5AOS. Respondents who identified as American Indian, Asian, or Pacific Islanders were asked one or two follow-up questions about their tribal or national origin (AA5B, AA5D, AA5E, AA5E1). Each of these items also included an option for "other (specify:)". Respondents indicating more than one race or ethnicity were asked which they most identified with (AA5F). This item listed the response already entered under "other (specify:)," if any, but did not allow interviewers to collect a new "other (specify:)" response.

5.1 Coding Procedures

RTI's procedures for race and ethnicity coding supported the data needs for weighting the CHIS sample. If codes could not be assigned for race or ethnicity they were left as missing and were later imputed. The imputation procedures are described in *CHIS 2015-2016 Methodology Series: Report 5 - Weighting and Variance Estimation*.

The coding procedures were consistent with those from the 2010 Census data and with those used in prior CHIS cycles. Census methods are documented in the Census 2010 Redistricting Data (Public Law 94-171) Summary File – Technical Documentation (U.S. Census Bureau, 2011) available at_ http://www.census.gov/prod/cen2010/doc/pl94-171.pdf. The specific sections of interest are in Appendix B, pages B-2 and B-3. When we refer to the Census procedures, we mean our interpretation of the information in this document.

An initial review of cases showed that the largest group of cases with "other race" categories were ones in which the respondent identified as being Hispanic or Latino and did not identify with any pre-

coded race categories. The typical response to the "other race" was indicative of Hispanic ethnicity such as "Hispanic" or "Latino." Following the Census procedures, the person was left in the "other race" category and the "other (specify:)" text was standardized to "HISPANIC-LATINO."

The specific procedures and guidelines we used are detailed below. Responses captured in the "other (specify:)" text field were retained and included in the final data set delivery to accommodate other research and analytic needs.

- If the "other (specify:)" text clearly should have been included in an existing code (following the Census procedures), then it was up-coded and removed from the "other (specify:)" category. For example, if the respondent was coded only as other race and the "other (specify:)" was "Irish," then the code for "white" was upcoded to "yes," other race was revised to "no" and the "other (specify:)" text eliminated.
- If the "other (specify:)" text did not fit into an existing code (following the Census procedures), then it was left in the "other (specify:)" category with the existing text in the "other (specify:)." For example, if the "other (specify:)" text for race was "American" and no other race category was identified, then no changes were made in the responses.
- If the "other (specify:)" text indicated multiple races with no specific races mentioned (such as "mixed"), then the code for "other (specify:)" race was changed to "yes" for both the first and second mention. The "other (specify:)" text was standardized to "UNSPECIFIED MULTIPLE RACE."
- If the respondent was coded as being Hispanic or Latino, we never revised this code based upon information in the "other (specify:)" comments of the other variables. For example, if the person was coded as "Hispanic" and the specific Hispanic origin item was only coded as "other (specify:)" with the text "Jewish," then the Hispanic code was not altered.
- If the respondent was coded as not being Hispanic or Latino but the text in the "other (specify:)" field for race indicated they were Hispanic or Latino, then the Hispanic or Latino coding was revised to "yes." In addition, the specific Hispanic origin code was made consistent with text in the "other (specify:)" text from the race variable, if it was possible to do so. In the case where this was not possible, the "other (specify:)" Hispanic origin category was coded and the text copied from the race variable to the "other (specify:)" for Hispanic origin. (This procedure is an elaboration of the ones above to deal with the cross-variable coding.) For example, if the race "other (specify:)" code was "Mexican," then the Hispanic

or Latino category was revised to be "yes" and the Hispanic origin code was coded as "yes" for Mexican.

- Similarly, if any case was upcoded to Asian, American Indian, or Other Pacific Islander, then the follow-up questions about specific origin (AA5B, AA5D, AA5E, AA5E1) were also upcoded to be consistent with the "other (specify:)" text from AA5A if it was possible to do so. In cases where this was not possible, the "other (specify:)" origin category was coded and the text copied from the race variable to the "other (specify:)" for the follow-up question. For example, if the race "other (specify:)" code was "Filipino," then code for "Asian" was upcoded to "yes," "other (specify:)" race was revised to "no" and the "other (specify:)" text eliminated. After doing that, the code for AA5E for "Filipino" was revised to 'yes."
- If the "other race" text was similar to "none of above," and the respondent was coded as being Hispanic or Latino, the "other (specify:)" text was standardized to "HISPANIC-LATINO." If the respondent was not coded as Hispanic or Latino we left the response as it was.
- Hispanic or Latino respondents who reported American Indian or Alaska Native (AIAN) as their race, but did not report a tribal affiliation, are coded as having AIAN racial identity in the data. In prior cycles Hispanic or Latino respondents with unknown AIAN tribal identities were generally reclassified as non-AIAN.

After upcoding the "other (specify:)" specify responses for the race question (AA5A), RTI also reviewed all "other (specify:)" responses to the follow-up origin questions (AA5B, AA5D, AA5E, and AA5E1). These were upcoded when possible to the existing codes using a similar procedure. The Census procedures clearly state that persons who say they have European, Middle Eastern, or North African origin are to be classified as "White" race. This rule has many implications. For example, if a person says they are not Hispanic and only identify the "other race" as being "Spanish", we would upcode Hispanic origin to "yes" (to be consistent with the Census procedures for Hispanic origin) and then upcode "race" to "White" (since the person is of European origin).

6. IMPERIAL COUNTY ADDRESS-BASED SAMPLE (ABS)

Data collection for the Imperial County ABS was conducted between September and November 2016. Sampled addresses without matched telephone numbers were sent a short "screening" questionnaire, the primary purpose of which was to obtain a telephone number. These cases also received visits from field staff to complete the screening, if they did not complete the mailed screening. Returned questionnaires were receipted and scanned daily. A total of 42 questionnaires with telephone numbers were returned prior to filed visits. An additional 354 questionnaires with phone numbers were completed after initiating field efforts. Captured data were reviewed, and telephone information was transferred to the ROC each week. Once a sampled address was associated with a telephone number, whether through the vendor match or from the screener, the Imperial sample was fielded and processed the same way as the RDD and list sample cases. Tables detailing the Imperial ABS can be found in the other CHIS 2015-2016 methodology reports.